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Abstract: In this work, the least-squares methodology with covariance matrix is applied to determine a 
data curve fitting in order to obtain a performance function for the separative power δU of an 
ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer 
to 460 experiments on the ultracentrifugation process for uranium isotope separation. The process control 
variables, which significantly influence the δU values, are chosen in order to give information on the 
ultracentrifuge behaviour when submitted to several levels of feed flow F and cut θ and product line 
pressure Pp. The response curves are made relating the separative power with the control variables F, θ 
and Pp, to compare the fitted model with the experimental data and finally to calculate their optimized 
values. 
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Resumo: Neste trabalho, método dos quadrados mínimos com matriz de covariância é aplicada para 
determinar um formato de curva dos dados a fim obter uma função de desempenho para a energia de 
separação δU de uma ultracentrífuga em função de variáveis que são controladas experimentalmente.  Os 
dados experimentais correspondem a 460 experiências no processo de ultracentrifugação para a separação 
do isótopo de urânio.  As variáveis de controle do processo, que influenciam significativamente os valores 
de δU, são escolhidas a fim de dar a informação sobre o comportamento da ultracentrífuga quando 
submetidas a diversos níveis de fluxo F, da variável corte θ e de pressão da linha Pp. As curvas de 
resposta são feitas relacionando a energia de separação com as variáveis de controle F, θ e Pp, para 
comparar o modelo  com os dados experimentais e para calcular finalmente seus valores otimizados. 
 
Palavras-chave: ultracentrífuga; uranium hexafluorido; separação isotópica; matriz de covariância; 
método dos quadrados mínimos. 
 
 
I. INTRODUCTION  
 
A gas ultracentrifuge, as schematized in Fig. 1 is composed of a long, thin vertical 
cylinder (rotor), rotating around its axis at a high velocity inside a case under vacuum. 
The process gas, assumed to be a binary isotopic mixture with 235UF6 and 238UF6, inside 
the cylinder is subjected to a centrifuge force that establishes a pressure gradient in the 
radial direction, increasing from the center to the rotor wall (Jordan, 1980). That 
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pressure distribution, proportional to mass, is slightly dissimilar for the different 
isotopes. This results in a partial separation of the feed F, into two fractions: an enriched 
one (product) and another depleted (waste) in the desired isotope (235UF6). The 
ultracentrifuge performance and production capacity evaluation is usually done by 
means of the required work to isotope separation, which is proportional to the amount of 
processed material and to the obtained separation degree. The dependent variable that 
best defines the separative efficiency of any isotope separation unit, is the separative 
power or capacity δU, given by the following expression: 
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where the operational variables F, P and W are the streams of feed, product and waste; 
x, y 
and z are the isotope desired compositions, respectively; and the response variables are 
the 
abundance rations of product Rp=y/(1-y) and waste Rw=x/(1-x). 
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Figure 1: Countercurrent ultracentrifuge design 
 
 
II. EXPERIMENTS 

 
An isotopic separation test consists in the operation of an ultracentrifuge in a bench 
plant shown in Fig. 2. The ultracentrifuge receives an injection of a binary isotopic 
mixture with 235UF6 and 238UF6 as feed flow F and permits the extractions of the product 
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flow P and waste flow W. Samples are collected for verification of the separation 
obtained by the measures of the abundance ratio of the enriched and depleted streams, 
Rp and Rw, respectively, allowing to calculate the separative power δU, given by Eq. 
(1). Defining the cut θ as the relation between the product and feed flow and fixing the 
product pressure line pp, several groups of data are generated with the variation of the 
cut θ and the feed flow F. Each of them is denominated a separation experiment, 
resulting in an ultracentrifuge performance function like δU (F, θ, Pp). 
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Figure 2: Experimental bench plant design. 
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III. STATISTICAL THEORY 
 
The measurements of RP, RW, P and W, involved in the separative power determination 
δU, provide correlated uncertainties and define a covariance between them. These 
statistical uncertainties are propagated in Eq. (1) in order to obtain a final δU 
uncertainty by the expression (Cowan,1998): 
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where xi are the independent variables RP, RW, P and W, σi express their respective 
variances. The RP and RW variances are directly given by mass spectrometry analysis 
while the P and W variances are calculated from mass flowmeters calibration curves. 
Each δU experimental data covariance matrix is calculated by the expression: 
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where eil , ejl  are the partial uncertainty magnitude of any independent variable RP, RW, 
P and W; ρijl represents the microcorrelations between these variable measurements due 
to each attribute l. The process analysis permits to determine these microcorrelations 
values with safety. The δU experimental data fitting through a performance function of 
the kind δU (F, θ, internal variables) is obtained due to δU and (F,θ, Pp) relation that 
may be written as a second order polynomial given by:  
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where Y is the response (δU), βi are the equation coefficients and xi , xj are the 
controlled variables (F, θ, Pp). This equation is used to evaluate the linear, quadratic 
and interaction effects between these variables providing the project matrix A that 
contains all the fitted model explained variables. The Eq. (4) is a linear function in the βi 
parameters and although we can perform the least-squares method to any function, in 
this case the chi-square and estimators resulting values have desired properties: the 
estimators and their variances can be analytically obtained, they will be unbiased with 
minimum variance no matter the number of experiments or the experimental data 
distribution function. According to the least-square method with covariance matrix, the 
best possible solution is the one which minimizes the chi-square χ2. The χ2 value for 
this particular problem is given by (Smith, 1981 and 1993): 
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where βδ AUcalc ≈ , and β is the coefficients estimates vector of the fitted equation. Under 
the following conditions: (i) the δU experimental data is distributed according to a 
normal with a known covariance matrix, which permits to use the chi-square statistic, 
(ii) the fitted function, Eq.(4) is linear in the coefficients βi, allowing to obtain an 
analytical solution for Eq.(5) and (iii) the functional form of the fitted function, Eq.(4), 
is corrected, , i. e., it is possible to obtain the minimum deviation between the 
experimental and predicted values, so the quadratic form χ2 should  be distributed in 
conformity with the chi-square tables, allowing to evaluate the model goodness-of-fit 
(Cowan, 1998).  
 
The desired least-square solution is given by: 
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where the covariance matrix for the solution β is given by: 
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that gives the coefficients estimates variances and covariances of  the experimental data 
fitted curves. In this case, a FORTRAN program (Migliavacca, 2004) is used. 
 
 
IV. RESULTS AND DISCUSSION 

 
The experimental data performed with only one ultracentrifuge covered the whole 
domain of interest, consisting of eight levels of feed flow F, seven levels of cut θ and 
five levels of the product pressure line Pp, resulting in a group of 460 experiments. Due 
to secret character inherent to the process development, the sensitive data were codified, 
with all variables related to arbitrary units. The isotopic abundance ratios RF, RP and RW 
, and the flow values  F, P and W, with their respective uncertainties; the separative 
power δU and cut θ experimental values are presented in Tab. (1). In Tab. (2), are 
presented the coefficients estimates of the fitted equation, the determination coefficient, 
the chi-square and normalized chi-square and in Tab. (3) are presented their variances 
and covariances in the upper triangle and  their correlations in the lower triangle. 
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Table 2: Model coefficients estimates and model goodness-of-fit parameters 
 

 
 
 

Table 3: Covariance and correlation matrices 
 

 
 

 
As an additional verifying of possible residuals serial correlation, the Fig. 3 presents the 
model residuals distribution in positive and negative values around zero, characterizing 
a random scattering. In Figs. 4 - 5 are presented the residuals graphs against the 
controlled variables, which permit to evaluate the regression model residuals 
heteroscedasticity degree (Vasconcellos and Portella, 2001). 
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Figure 3: Residuals against number of experiments  
 
 

 
 

Figure 4: Residuals against θ . 
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Figure 5: Residuals against F. 
 

Through Figs. 6 - 7 it is possible to verify how satisfactorily the theoretic curve fits the 
experimental data and finally in Figs. 8 - 9 are presented the response surface of the 
separative power δU, against F and θ, and, Pp θ, that allows visualizing the δU behavior 
in the ultracentrifugation process to find the optimum values of the operational 
controlled variables. 

 

 
 

Figure 6: δU against F. 
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Figure 7: δU againstθ. 
 
 

 
 

Figure 8: δU against F and θ. 
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Figure 9: δU against Pp and θ. 
 
 

V. CONCLUSIONS 
 

The least-squares method with covariance matrix was successfully applied to determine 
the ultracentrifuge separative power δU fitting curve against experimentally controlled 
variables. The normalized chi-square obtained showed a very reasonable agreement 
between the experimental δU data dispersion and the uncertainties estimated through 
their covariance matrix. The fitted model was able to explain the experimental data due 
to the determination coefficient (R2= 0,9268). In Figs. 4 - 5, it is possible to verify that 
there is no visible pattern between the residuals and the control variables and finally 
through the response curve graphs, Figs. 6 - 7, the theoretical model is showed to be 
reasonably fitted to the experimental data.  
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